
Acta Technica 62 (2017), No. 6B, 559–570 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Mass data fast retrieval in distributed

cluster based on svm optimized neural

network

Weibo Zhou1, Yong Zhong1

Abstract. As for low retrieval efficiency of Lucene retrieval algorithm for big data, based
on incremental retrieval of MapReduce, full-text Lucene engine and parallel retrieval method is
proposed in the Thesis. By improving incremental retrieval, increasing capacity of index buffer zone
and reducing indexing and writing frequency of disk files, we have achieved the goal of increasing
efficiency in creating index, created parallel Lucene full-text retrieval engine based on MapReduce
parallel computing module in Hadoop framework and thus realized parallelized execution of big
data retrieval. In the end, establishing simulation environment for full-text retrieval of big data
and displaying single-process retrieval mode of proposed parallel retrieval mode can substantially
promote retrieval accuracy and execution efficiency. The simulation results show that proposed
MapReduce-Lucene retrieval process has better retrieval accuracy and operating efficiency.

Key words. Incremental index, Big data, Intelligent algorithm, Distributed computation,
Mass data, Data retrieval.

1. Introduction

The research field of search engine involves information inquiry, database technol-
ogy, machine-aided training and multiple research disciplines. At present, companies
with mature search engine voluntarily reserve it as private technology and therefore
researches on application and extension of search engine technology are restricted to
a certain degree [1, 2]. In recent years, Lucene technology attracts too much atten-
tion and its application field is increasingly wider. Therefore, researches on efficiency
promotion of retrieval and index have great success, which lays a foundation for ap-
plication of Lucene technology [3]. For this purpose, based on previous research
achievements, MapReduce algorithm framework is used in design in the Thesis to
realize parallelized improvement of Lucene retrieval process. At the same time, full-
text retrieval experiment is designed and 102 to 106documents are selected and used

1Chengdu Institute of Computer Applications, Chinese Academy of Science , Chengdu, China

http://journal.it.cas.cz



560 WEIBO ZHOU, YONG ZHONG

to establish test platform. Compared with previous achievements, the performance
of parallel retrieval in different document scales can be used for experiment and test
so as to verity effectiveness of parallel experiment.

2. Parallel framework of incremental Lucene system

2.1. System framework

In algorithm design process, based on users’ application, we have carried out
top-down analysis on system requirements. Later on, we have carried out effective
division of system based on system requirements: 4 groups of modules such as
system feature extraction, system storage, system inquiry and system retrieval. And
then, derive the relation for system dependent components based on supporting
technology, as shown in Fig. 1.

 
  Fig. 1. System parallel framework

As shown in parallel framework in Fig. 1, above-mentioned four groups of mod-
ules are mutually dependent and are indispensable. Except the system inquiry mod-
ule in parallel framework, the rest modules are established based on Hadoop frame-
work and design modules mainly include: (1) system storage module. Functions of
the module in system are mainly to realize storage of document and data, feature
data extraction and retrieval; (2) system feature extraction module. Its function
is mainly to execute and upload feature extraction data of the document in HDFS
system structure. (3) System retrieval module. Establish corresponding index for
extracted feature library. (4) System inquiry module. Design system inquiry module
based on framework of B/S algorithm and it can be divided into feedback equipment,
querier and 3 components at operating interface.



MASS DATA FAST RETRIEVAL IN DISTRIBUTED CLUSTER 561

2.2. Incremental Lucene index

In system indexing process, the index creation process will be executed in MapRe-
duce process. For this purpose, records in Hbase Table can be regarded as input in
MapReduce computing framework. The key/value of this input value is recorded in
Hbase Table as Row key and the value shall be columa family of this record. The
function of IdentityTableMap in Hbase class library is to turn records into key/value
of row key and Columa Family and then output it to Reduce operation process. For
this purpose, we can directly use map() mapping mode in IdentityTableMap and then
acquire a group of IndexTableReduce by customized method so as to accomplish the
process of reduce() created by index. At the same time, to make it convenient for
reasonable algorithm design, we need to accomplish the following operations in re-
duce() process: mapping row data in Hbase to Lucene document and then adopt
byte serial for storage of row key and Columa Family. And then encapsulate this
Lucene document and then carry out customized format output after encapsulation
in LuceneDocumentWrapper. The format is based on IndexOutputFormat and then
accomplish creating process of corresponding retrieval. Specific process are shown
in Fig. 2.

 
  Fig. 2. Index process

 
  Fig. 3. Incremental index system

Parallelized operation can be realized in index creation process and therefore we



562 WEIBO ZHOU, YONG ZHONG

need to design based on incremental index and this design is based on HDFSDirec-
tory and can inherit Lucene Directory. And then, we can encapsulate it into HDFS
system structure to make it convenient for reading and storage of Lucene index on
HDFS. After incremental Lucene parallel index is created, we need to execute fea-
ture parallel extraction of information retrieval to realize parallelized retrieval of
information.

3. Storage of parallel extracted feature

3.1. Parallelized Mapreduce framework

Mapreduce parallel framework is the parallel execution framework of distributed
big data which is relatively mature at present. At the same time, it has relatively
mature application in cluster execution process of parallel big data. The name of
Mapreduce derives from two process operations involved in this framework: map and
reduce processes. The essence of map process is similar to that of mapping process
and it is the mapping process of dataset members. After map process, feedback will
be provided in list of results. As for results acquired in map process, parallelized
structure will be used in reduce process to realize them. Specific conditions are
shown in Fig. 4[14].

Map ()

Reduce ()

Reduce ()

Map ()

Map ()

In
p

u
t 

d
at

as
et

 

O
u

tp
u

t 
re

su
lt

s 

 
  

Fig. 4. Mapreduce model

In parallel framework execution, the problem we need to solve is the decompo-
sition of mutual independent operation in data execution sub-process to make it
convenient for acquiring full play of computing resource performance. In map and
reduce processes, the algorithm framework is established mainly based on key-value
involved in processing data. The specific form is:

Map : (k1, v1)→ [(k2, v2)] . (1)

Reduce : (k2, [v2])→ [(k3, v3)] . (2)

In system execution process, the function of management host is to carry out
dynamic and real-time adjustment on the number of host for parallel computation
according to input setting of data breakpoint. At the same time, the management
host is used to carry out real-time treatment of fault in computational process. At the
same time, the management host can give command to programmers without hard-
ware and operation experience to make it convenient for data resource distributed



MASS DATA FAST RETRIEVAL IN DISTRIBUTED CLUSTER 563

operation of large-scale structure.

3.2. Texture extraction process

Tamura texture extraction process is based on feature vector and it is the feature
combination of 3 to 6 kinds of texture documents. Commonly used features at
present include contrast, roughness and directionality [13].

Roughness indicator: measurement required for the indicator is the proportion
between space size of texture feature and granularity document. In case the window
dimension is: 22k × 22k, then the average value of moving times of gray value near
the pixel point (i, j) is:

ak (i, j) =

i+2k−1−1∑
i=i−2k−1

j+2k−1−1∑
j=j−2k−1

p (i′, j′)

22k
. (3)

In Equation (1), p (i′, j′) is the gray value near the pixel point (i′, j′) and its
deviation value in vertical and horizontal directions are:

ck (i, j) = max

( ∣∣ak (i− 2k−1, j
)
− ak

(
i+ 2k−1, j

)∣∣∣∣ak (i, j − 2k−1
)
− ak

(
i, j + 2k−1

)∣∣ ) , (4)

Confirm window dimension and acquire the maximum value k of ck (i, j). In
general, k is distributed within the range from 0 to 2:

k̂ (i, j) = arg max
k

ck (i, j) , (5)

Solve the average value of window dimension of all pixel points and then solve the
roughness of document feature:

lcoarse =
1

wh

∑
i,j

2k̂(i,j) . (6)

In Equation (4), w is document width and h is document height. The roughness
extraction process of Tamura texture is shown in Fig. 5 and the result value returned
in that process is the calculated value of roughness indicator in document. In above-
mentioned flow computing process, the window dimension of pixel point (i, j) is
omitted to calculate this process.

Contrast indicator: the indicator is mainly used to measure light and shade
degree shown in document and its computational process is:

Contrast =
σ

4
√
α4

. (7)

α4 =
µ4

σ4
=

1
wh

∑
i,j (µ (i, j)− µ)

4

σ4
. (8)

In above-mentioned equation, σ is the deviation in gray value of document, µ is



564 WEIBO ZHOU, YONG ZHONG

 
  Fig. 5. Feature extraction process

the average gray value of document, µ (i, j) is the gray value of pixel point (i, j), µ4

is the central moment of order-4 gray value, w is document width and h is document
height. The contrast indicator acquisition process of Tamura texture is shown in
Fig. 5 and feedback result in this process is the contrast indicator of document.

Directionality indicator: distribution and intensive feedback along texture in a
certain direction and the computing form of direction gradient of pixel point (i, j)
is:

gi,j =

(
∆h (i, j)
∆v (i, j)

)
. (9)

Computing process of gradient ∆h (i, j) in horizontal direction is: solve the deviation
between gray value of 3 groups of pixel at the left pixel point (i, j) and gray value of
3 groups of pixel at the right pixel point (i, j), and then calculate gradient ∆v (i, j)
in vertical direction: solve the deviation between gray value of 3 groups of pixel at
the upper pixel point (i, j) and gray value of 3 groups of pixel at the lower pixel
point (i, j). 

∆h (i, j) =
∑

k∈{−1,0,1}

p (i+ 1, j + k)− p (i− 1, j + k) ,

∆v (i, j) =
∑

k∈{−1,0,1}

p (i+ k, j + 1)− p (i+ k, j − 1) .
(10)

The vector gi,j can be converted into polar form:

(|gi,j | , ϕi,j) =

( |∆h(i,j)|+|∆v(i,j)|
2 ,

tan−1
(

∆v(i,j)
∆h(i,j)

)
+ π

2

)
, (11)



MASS DATA FAST RETRIEVAL IN DISTRIBUTED CLUSTER 565

Mark a direct square strip ϕ (k) in direction histogram, which meets:

2k − 1

2n
<
ϕi,j
n

<
2k + 1

2n
(mod1) , (12)

In case there are pixel points with the number conforming to |gi,j | > t, then the
histogram in this direction is equivalent to gradient of this document in horizontal
direction. The process to acquire directionality for Tamura texture feature extraction
is shown in Fig. 5.

3.3. Feature parallel storage process

Feature parallel storage process is designed in a group of MapReduce framework.
This work is mainly to read document data stored in HDFS structure, extract feature
texture of this document data and then store acquired feature data in HBase class
library. For this purpose, ExtractMap is created and then realize it through map()
mapping process. Above-mentioned computing flows of processing process are shown
in Fig. 6. At the same time, no customization is carried out on Reduce and directly
output map() mapping output through reduce() process based on WentityReducer
but reduce() operation does not work.

 
  

Fig. 6. Parallel mapreduce feature storage

After feature texture extraction of documents to be processed, execute the fol-
lowing process: in process control at client-side, Uploader is used for request of
HDFS and then upload batches of local documents. After storage of texture feature,
RunExtract object will request to create HTable object and then start ExtractMap
operation process. And then, control and operate extraction and storage process of
feature texture in above-mentioned processes.

Class relationship between feature texture extraction algorithms in designed doc-
uments is shown in Fig. 7.

In the figure, Client is mainly responsible for resources scheduling for above-
mentioned system. But ExtractMap object is the core of algorithm computing and
the process needs to be implemented according to feature texture extraction process.
ImageFilelnputFormat is the input format of map() mapping process customized for
design value to make it convenient for reading digital documents.



566 WEIBO ZHOU, YONG ZHONG

 
  Fig. 7. Feature texture extraction class relationship

4. Experimental analysis

Hardware system is: CPU is i3-4200U, RAM is 4G ddr3-1333 and hard disk
is 500G Seagate. To verify effectiveness of index optimization process, carry out
simulation in two parts corresponding to the design. Experiment in the first part
reproduces the method of single-process Lucene index and the dataset in the Thesis
is used to acquire a new experiment result. In specified node (such as 8 nodes),
computing results of parallel MapReduce-Lucene index are used for comparison. At
the same time, the algorithm in Literature [15] is used as the algorithm for lateral
comparison; in the second part is aimed at computing results of above-mentioned
parallel MapReduce-Lucene index so as to calculate change conditions of algorithm
performance indicators in different nodes and different document libraries.

4.1. Fixed experimental subjects

To make it convenient for verifying influences of above-mentioned index opti-
mization process on computing efficiency of index, 1000 documents (82.4MB data)
selected from Literature [14] are used for simulation test and the size of each docu-
ment varies from 0.02M to 2M. Add index document and Chinese word segmentation
module for module preprocessing and then create document index according to par-
allel framework of incremental Lucene system. 50 to 100 groups of features words
will be used to substitute documents. Chinese word segmentation module is created
by word segmentation API developed by Chinese Academy of Sciences. 10 groups
of subject keywords are used to search the index. Computing nodes of algorithm
operation are 8 and they are used for contrast experiment. First of all, carry out
internal storage and read-in on documents by Lucene, create single index segment,
combine index segments and then carry out write-in on disk (Map process). However,
due to upper limit for the number of documents in index segment, the combination
operation shall be carried out without restrictions. Contrast accuracy of contrast
indicator selection index, recall ratio and operating time of algorithm. Experimental
results are shown in Table 1.

Table 1 illustrates index of single-process Lucene, parallel MapReduce-Lucene
index, computing accuracy of index process in Literature [15], recall ratio and run-



MASS DATA FAST RETRIEVAL IN DISTRIBUTED CLUSTER 567

ning time index of algorithm. It is known from Table 1 that parallel MapReduce-
Lucene index method has relatively higher inquiry accuracy, lower recall ratio and
less computing time and above-mentioned experiment data reflects improvement of
computing performance of designed algorithm.

Table 1. Optimization of the index results (run 30 times)

Algorithm Accuracy/% Recall ratio/% Time/S

Single Lucene 82.3% 23.4% 251.6

Parallel Lucene 96.2% 15.3% 34.6
Literature [15] 91.4% 16.8% 231.4

Table 1 shows average value indicator of three contrast algorithms after 30 times
of operation and it is the consideration of algorithm stability. Fig. 1 has illustrated
indication distribution figure of accuracy, recall ratio and running time index of
algorithm in above-mentioned 30 times of operation.

 
  (a) Accuracy and recall ratios

 
  (b) Running time index contrast

Fig. 8. Index distribution contrast

Fig. 8a is the distribution figure of accuracy and recall ratio indexes and Fig. 8b
is the distribution figure of running time. It is known from Fig. 8a that MapReduce-
Lucene index method in the Thesis has relatively lower index distribution figure and
it is known from this that the stability of MapReduce-Lucene index method is higher.
In running time shown in Fig. 8b, index distribution figure of MapReduce-Lucene



568 WEIBO ZHOU, YONG ZHONG

index method is relatively lower, which reflects stability of the algorithm in the same
way.

4.2. Algorithm adaptability

According to index computing results of proposed parallel MapReduce-Lucene,
calculate change conditions of algorithm performance indicators in different nodes
and different setting conditions of document library. First of all, set variation range
of document library scale: 102 to 106documents. computing nodes are set to be 8.
Algorithm contrast effects are shown in Fig. 9.

 
  Fig. 9. Performance metrics for different document number algorithms

According to experimental results shown in Fig. 9, in accuracy and recall ratio
indexes and in different document numbers, the algorithm in the Thesis is always
superior to the algorithm of single-process Lucene index and the index algorithm in
Literature [15]. In calculating time index and in 8 given computing nodes, when the
document number is 104, node computing resources are saturated.

Given computing nodes are respectively 4, 8 and 16 and the text number is 104

and the variation conditions of the algorithm in accuracy, recall ratio and algorithm
running time indexes are shown in Fig. 10.

Fig. 10 illustrates the algorithm performance indicators in different numbers of
computing nodes. It is known from simulation data in the figure that in 4 to 8
variation processes in computing stage, promotion in performance indicators of the
algorithm is relatively obvious; in variation process of 8 to 16 computing nodes,
variation in algorithm performance is not too obvious, which shows the number of



MASS DATA FAST RETRIEVAL IN DISTRIBUTED CLUSTER 569

nodes at this time is saturated for 104 of text number.

 Fig. 10. The number of different computing nodes

5. Conclusion

To improve retrieval efficiency of Lucene in big data, incremental full-text Lucene
engine parallel retrieval method based on MapReduce is proposed in the Thesis.
First of all, research is carried out on Lucene index principle structure, improve and
increase index capacity in buffer zone and reduce index writing frequency of disk files
based on incremental index and realize improvement in index creation efficiency;
secondly, since index efficiency promotion of single-process Lucene is limited and
based on parallel MapReduce computing module in Hadoop framework, parallel
Lucene full-text retrieval engine is created to realize parallelized execution of big
data retrieval.

Acknowledgement

The Sci.&Tec. Support Plan of Sichuan Province “Research on Key Technology
of Big Data” under the grant No. 2014GZ0013.

References

[1] Dong J, Krzyzak A, Suen C Y: (2005) Fast SVM Training Algorithm with De-
composition on Very Large Data Sets[J]. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 27(4):603-618.

[2] Liu R, Wang Y, Baba T, et al.: (2007) SVM-based active feedback in image
retrieval using clustering and unlabeled data[J]. Pattern Recognition, 41(8):2645-2655.

[3] Li X, Wang N, Li S Y: (2007) A Fast Training Algorithm for SVM Via Clustering
Technique and Gabriel Graph[C]// Advanced Intelligent Computing Theories and Ap-
plications. With Aspects of Contemporary Intelligent Computing Techniques, Third



570 WEIBO ZHOU, YONG ZHONG

International Conference on Intelligent Computing, ICIC 2007, Qingdao, China, Au-
gust 21-24, 2007. Proceedings. DBLP, 2007:403-412.

[4] Harvey R W: (2011) Theoretical and experimental comparison of different approaches
for color texture classification[J]. Journal of Electronic Imaging, 20(4):49-59.

[5] Patra S, Bruzzone L: (2014) A Novel SOM-SVM-Based Active Learning Technique
for Remote Sensing Image Classification[J]. IEEE Transactions on Geoscience & Re-
mote Sensing, 52(11):6899-6910.

[6] Malvadkar S D, Waskar S R, Patil N K, et al.: (2015) A Fast Clustering Based
FSS Algorithm for High Dimentional Data using SVM [C]// International Journal of
Engineering Research and Technology. ESRSA Publications.

[7] Qiao P L, Chen S F: (2009) Intrusion Detection System Technique Based on
BP-SVM [C]// International Conference on Management and Service Science. IEEE,
2009:1-3.

[8] Qi Y L, He W, Shu H: (2008) An Optimized Approach on Reduced Kernel Matrix
to ClusterSVM [C]// International Conference on Intelligent Information Hiding and
Multimedia Signal Processing. DBLP, 2008:1446-1449.

[9] Anyanwu L O, Keengwe J, Arome G A: (2010) Scalable Intrusion Detection
with Recurrent Neural Networks[C]// Seventh International Conference on Information
Technology: New Generations. IEEE, 2010:919-923.

[10] Huang T S, Dagli C K, Rajaram S, et al.: (2008) Active Learning for Interactive
Multimedia Retrieval [J]. Proceedings of the IEEE, 96(4):648-667.

[11] Khan M M, Ahmad A M, Khan G M, et al.: (2013) Fast learning neural networks
using Cartesian genetic programming [J]. Neurocomputing, 121(18):274-289.

[12] Shi W, Zhu Y, Huang T, et al.: (2016) An Integrated Data Preprocessing Frame-
work Based on Apache Spark for Fault Diagnosis of Power Grid Equipment [J]. Journal
of Signal Processing Systems, 2016:1-16.

[13] Wang X: (2014) Aero-engine Gas Path Fault Diagnosis Based on Improved Support
Vector Machine and Synergetic Neural Network [J]. Journal of Information & Compu-
tational Science, 11(10):3533-3542.

Received May 7, 2017


	Weibo Zhou, Yong Zhong: Mass data fast retrieval in distributed cluster based on svm optimized neural network
	Introduction
	Parallel framework of incremental Lucene system
	Storage of parallel extracted feature
	Experimental analysis
	Conclusion


